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Financial data

Empirical research highlights some stylized facts that financial data
possess (e.g., indexes of major stock markets, exchange rates...)
Consider the time series of the stock price of Generali, a well known
company quoted in the Italian exchange.
It is clear from the plot of the series that there is no stationarity in
mean, rather there is a trend!
Non stationarity is confirmed when looking at the correlogram that
decays slowly.
Testing the parameters may highlight the presence of a unit root.
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Figure: Daily time series of Generali in 26/10/2001-2/12/2003 and ACF.
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When studying financial time series, the interest is in the variations of
the price levels rather than just their levels.
Variations give information on profits and losses.
Usually, people look at the log variations which are called in finance
returns.
One of the advantages in modelling returns is that they represent a
good approximations of the percentage variations.
Given the time series of the prices Pt, and defined the log prices
pt = log(Pt), returns are obtained as follows

rt = logP(t)− logP(t − 1) = log
P(t)

P(t − 1) = (pt − pt−1)(×100).
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From a statistical point of view, modeling first differences of P(t) is
equivalent to modeling those of logP(t), since, logarithm is a
monotone and bijective function.
With respect to the Box-Jenkins procedure, returns correspond to a
first order difference that eliminates the non stationarity in mean.
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Figure: Generali returns.
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Figure: ACF and PACF of Generali returns.
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The plots show the main feature of the returns.
They look uncorrelated, as confirmed by the Ljung-Box test.
By the theory studied so far, we could conclude that series of returns
is a WN...
...this means that returns cannot be modelled!
What if we look at other forms of dependence different from the
linear one ?
Let’s have a look at the correlogram of the squared returns.
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grafico dei rendimenti quadrati
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Figure: Squared returns and ACF.
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The plots show the presence of linear dependence in the squared
returns.
This suggests that the ARMA class of models can be applied to study
the series of r2

t .
In practice, it is common to assume that returns have zero mean.
The plot also suggests that it could be useful to model the variance of
rt, or their volatility.
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Figure: Histogram and qqplot of the returns series.
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The returns’ distribution is not Gaussian, but it is leptokurtic, that is
more pointed than the Gaussian case and with heavier tails.
Returns’ distribution often exhibits asymmetry as a result from the
fact that negative shocks have higher impact on volatility than
positive shocks, a phenomenon called leverage effect.
The most used index to evaluate kurtosis is

Kr = E
[
(rt − µ)4

σ4

]
.

For a Gaussian distribution the kurtosis is equal to 3. By contrast,
financial data have

K̂r =
1
n

T∑
i=1

(rt − µ̂)4

σ̂4 > 3.
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The most used index to evaluate asymmetry is

SK = E

[
(rt − µ)3

σ3

]
.

For a Gaussian distribution the asymmetry is zero. By contrast,
financial data have

ŜK =
1
T

T∑
i=1

(rt − µ̂)3

σ̂3 ̸= 0.

In the case of Generali,
ŜK = −0.11

K̂ = 4.12

This means that high and low returns in absolute value are more
frequent than those expected for a Gaussian distribution.
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Such statistical aspect has strong financial implications. This means
that high returns in absolute value represent huge gains or losses.
The Jarque and Bera Normality test based on the sample skewness
and kurtosis allows to test simultaneously if the skewness and kurtosis
of the data are coherent with those under the Gaussian hypothesis

JB =
T − 1

6

[
ŜK2

+
1
4(K̂ − 3)2

]
∼H0 χ

2
2.

Financial times series show a feature denoted as volatility clustering,
that is periods of high volatility tend to persist and be followed by
persistent periods of relative stability.
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Since returns are not constant, an intuitive risk factor is given by their
variability. The higher their variability the higher the risks of losses
and the chances of gains.
A simple possible risk indicator is then given by the conditional
variance

σ2
t = Var(rt|Ft−1) = E(r2

t |Ft−1)− E(rt|Ft−1)
2

Assuming zero mean returns (or (rt − µ)) then the conditional
variance becomes

σ2
t = E(r2

t |Ft−1)

Autocorrelation in the squared returns means that the value of the
volatility ”today” is informative about its value ”tomorrow”.
therefore, it is important to capture and being able to forecast
volatility.
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